3.704 \(\int \frac{x^3}{(a+b x^2) \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=68 \[ \frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{b^{3/2} \sqrt{b c-a d}}+\frac{\sqrt{c+d x^2}}{b d} \]

[Out]

Sqrt[c + d*x^2]/(b*d) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(b^(3/2)*Sqrt[b*c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.0639165, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {446, 80, 63, 208} \[ \frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{b^{3/2} \sqrt{b c-a d}}+\frac{\sqrt{c+d x^2}}{b d} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

Sqrt[c + d*x^2]/(b*d) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(b^(3/2)*Sqrt[b*c - a*d])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^3}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=\frac{\sqrt{c+d x^2}}{b d}-\frac{a \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{2 b}\\ &=\frac{\sqrt{c+d x^2}}{b d}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{b d}\\ &=\frac{\sqrt{c+d x^2}}{b d}+\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{b^{3/2} \sqrt{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.0540831, size = 68, normalized size = 1. \[ \frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{b^{3/2} \sqrt{b c-a d}}+\frac{\sqrt{c+d x^2}}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

Sqrt[c + d*x^2]/(b*d) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(b^(3/2)*Sqrt[b*c - a*d])

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 318, normalized size = 4.7 \begin{align*}{\frac{1}{bd}\sqrt{d{x}^{2}+c}}+{\frac{a}{2\,{b}^{2}}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}}+{\frac{a}{2\,{b}^{2}}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x)

[Out]

(d*x^2+c)^(1/2)/b/d+1/2/b^2*a/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+
2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(
x+1/b*(-a*b)^(1/2)))+1/2/b^2*a/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))
+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/
(x-1/b*(-a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.5331, size = 648, normalized size = 9.53 \begin{align*} \left [\frac{\sqrt{b^{2} c - a b d} a d \log \left (\frac{b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \,{\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} + 4 \,{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{b^{2} c - a b d} \sqrt{d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \,{\left (b^{2} c - a b d\right )} \sqrt{d x^{2} + c}}{4 \,{\left (b^{3} c d - a b^{2} d^{2}\right )}}, \frac{\sqrt{-b^{2} c + a b d} a d \arctan \left (-\frac{{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{-b^{2} c + a b d} \sqrt{d x^{2} + c}}{2 \,{\left (b^{2} c^{2} - a b c d +{\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )}}\right ) + 2 \,{\left (b^{2} c - a b d\right )} \sqrt{d x^{2} + c}}{2 \,{\left (b^{3} c d - a b^{2} d^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b^2*c - a*b*d)*a*d*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x
^2 + 4*(b*d*x^2 + 2*b*c - a*d)*sqrt(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*(b^2*c -
a*b*d)*sqrt(d*x^2 + c))/(b^3*c*d - a*b^2*d^2), 1/2*(sqrt(-b^2*c + a*b*d)*a*d*arctan(-1/2*(b*d*x^2 + 2*b*c - a*
d)*sqrt(-b^2*c + a*b*d)*sqrt(d*x^2 + c)/(b^2*c^2 - a*b*c*d + (b^2*c*d - a*b*d^2)*x^2)) + 2*(b^2*c - a*b*d)*sqr
t(d*x^2 + c))/(b^3*c*d - a*b^2*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\left (a + b x^{2}\right ) \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**3/((a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.12499, size = 86, normalized size = 1.26 \begin{align*} -\frac{\frac{a d \arctan \left (\frac{\sqrt{d x^{2} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} b} - \frac{\sqrt{d x^{2} + c}}{b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-(a*d*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) - sqrt(d*x^2 + c)/b)/d